Effects of Liver Disease on Pharmacokinetics

Juan J.L. Lertora, M.D., Ph.D.
Director
Clinical Pharmacology Program
Office of Clinical Research Training and Medical Education
National Institutes of Health
Clinical Center
GOALS of Liver Disease Effects Lecture

• Estimation of Hepatic Clearance

• Effect of Liver Disease on Elimination:
 - RESTRICTIVELY Eliminated Drugs
 - NON-RESTRICTIVELY Eliminated Drugs

• Other Effects of Liver Disease:
 - Renal Function
 - Drug Distribution
 - Drug Response

• Modification of Drug Therapy in Patients with Liver Disease
ADDITIVITY of Clearances

$$CL_E = CL_R + CL_{NR}$$

- ESTIMATED FROM PLASMA LEVEL-VS.-TIME CURVE
- ESTIMATED FROM RECOVERY OF DRUG IN URINE
- ESTIMATED AS $CL_E - CL_R$
CALCULATION OF CL_H

$\text{CL}_H = \text{CL}_E - \text{CL}_R$

Assumes $\text{CL}_H = \text{CL}_{NR}$
FICK EQUATION

\[
\begin{align*}
\text{Cl} &= Q \left[\frac{A - V}{A} \right] \\
E &= \left[\frac{A - V}{A} \right] \\
\text{So} \quad \text{Cl} &= Q \cdot E
\end{align*}
\]

A = CONCENTRATION ENTERING LIVER
V = CONCENTRATION LEAVING LIVER
Q = HEPATIC BLOOD FLOW
Derivation of ROWLAND EQUATION (I)

\[f_u = \text{FRACTION OF DRUG THAT IS UNBOUND} \]

\[CL_{int} = \text{HEPATIC CLEARANCE IN ABSENCE OF BINDING RESTRICTION} \]
Derivation of *ROWLAND EQUATION (II)*

Mass Balance Equation:

\[
V \frac{dC_v}{dt} = QC_a - QC_v - f_u CL_{int} C_v
\]
Derivation of **ROWLAND EQUATION (III)**

![Diagram of blood flow and concentration](image)

Blood Flow (Q)

\[\begin{align*}
C_a & \quad \overline{V, C_v} \quad C_v \\
\end{align*} \]

at steady state:

\[QC_a - QC_v - f_u CL_{int} C_v = 0 \]

so:

\[Q \left(C_a - C_v \right) = f_u CL_{int} C_v \]

\[QC_a = \left(Q + f_u CL_{int} \right) C_v \]

therefore:

\[ER = \frac{C_a - C_v}{C_a} = \frac{f_u CL_{int}}{Q + f_u CL_{int}} \]
ROWLAND EQUATION
WELL-STIRRED COMPARTMENT

\[CL_H = Q \cdot E = Q \cdot \left[\frac{f_u CL_{\text{int}}}{Q + f_u CL_{\text{int}}} \right] \]

TWO LIMITING CASES:

RESTRICTIVELY METABOLIZED DRUGS (\(Q >> f_u CL_{\text{int}}\)):

\[CL_H = f_u CL_{\text{int}} \]

NON-RESTRICTIVELY METABOLIZED DRUGS (\(f_u CL_{\text{int}} >> Q\)):

\[CL_H = Q \]
RESTRICTIVELY and NON-RESTRICTIVELY Eliminated Drugs

RESTRICTIVELY METABOLIZED DRUGS:

Phenytoin
Warfarin
Theophylline

NON-RESTRICTIVELY METABOLIZED DRUGS:

Lidocaine
Propranolol
Morphine
HEPATIC FIRST-PASS METABOLISM

\[E = \frac{A - V}{A} \]

IF \(E = 1 \): \(V = 0 \)

IF \(E = 0 \): \(V = A \)
These drugs have extensive first-pass metabolism.

\[
\text{Cl}_H = Q = Q \cdot ER
\]

For: \[ER = \left[\frac{A - V}{A}\right] \Rightarrow 1, \ V \Rightarrow 0\]

But: \[F = 1 - ER, \ So \ F \Rightarrow 0\]
ACUTE VIRAL HEPATITIS

• Acute inflammatory condition
• Mild and *transient changes* related to extent of disease in most cases. Infrequently severe and fulminant
• *May become chronic* and severe
• Changes in drug disposition less than in chronic disease
• *Hepatic elimination returns to normal* as disease resolves
CHRONIC LIVER DISEASE

• Usually related to chronic alcohol use or viral hepatitis

• Irreversible hepatocyte damage
 – Decrease in SERUM ALBUMIN concentration
 – Decrease in INTRINSIC CLEARANCE of drugs
 – Intrahepatic and extrahepatic shunting of blood from functioning hepatocytes
 – FIBROSIS disrupts normal hepatic architecture
 – NODULES of regenerated hepatocytes form
RESTRICTIVELY Metabolized Drugs: Effects of LIVER DISEASE

\[\text{CL}_H = f_u \text{CL}_{int} \]

<table>
<thead>
<tr>
<th></th>
<th>(\text{CL}_H)</th>
<th>FREE CONC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ ALBUMIN</td>
<td>↑</td>
<td>NO CHANGE</td>
</tr>
<tr>
<td>↓ (\text{CL}_{int})</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>PORTOSYSTEMIC SHUNTING</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>
RESTRICTIVELY Metabolized Drugs: Effect of PROTEIN BINDING Changes

\[
\bar{C}_{ss} = \frac{\text{DOSE} / \tau}{CL_H}
\]

FOR RESTRICTIVELY ELIMINATED DRUGS:

\[
CL_H = f_u CL_{int}
\]

FREE CONC. = \(\bar{C}_{ss} \cdot f_u = \frac{f_u \text{DOSE} / \tau}{f_u \cdot CL_{int}} \)
FREE and TOTAL PHENYTOIN Levels (DOSE = 300 MG/DAY)

\[
\text{CL}_H \uparrow \\
\text{CL}_{INT} =
\]

- **BOUND [PHENYTOIN]**
- **FREE [PHENYTOIN]**

NORMAL RENAL FUNCTION

FUNCTIONALLY ANEPHRIC
RESTRICTIVELY Metabolized Drugs: Effect of PROTEIN BINDING Changes
RESTRICTIVELY Metabolized Drugs: Effects of LIVER DISEASE

\[CL_H = f_u \, CL_{int} \]

<table>
<thead>
<tr>
<th>Condition</th>
<th>(CL_H)</th>
<th>FREE CONC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ ALBUMIN</td>
<td>↑</td>
<td>NO CHANGE</td>
</tr>
<tr>
<td>↓ (CL_{int})</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>PORTOSYSTEMIC SHUNTING</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>
Role of **CYP ENZYMES** in Hepatic Drug Metabolism

RELATIVE HEPATIC CONTENT OF CYP ENZYMES
- CYP 2C: 17%
- CYP 3A4-5: 26%
- CYP 1A2: 12%
- CYP 2C9: 14%
- CYP 2C19: 11%
- CYP 2D6: 23%
- CYP 2E1: 7%
- OTHER: 36%

% DRUGS METABOLIZED BY CYP ENZYMES
- CYP 3A4-5: 33%
- CYP 2D6: 23%
- CYP 2C9: 14%
- CYP 1A2: 14%
- CYP 2C19: 11%
- CYP2E1: 5%
RESTRICTIVELY Metabolized Drugs: Effect of CIRRHOSIS on CL_{int}
Pugh-Child Classification of Liver Disease Severity

<table>
<thead>
<tr>
<th>Assessment Parameters</th>
<th>1 Point</th>
<th>2 Points</th>
<th>3 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encephalopathy Grade</td>
<td>0</td>
<td>1 or 2</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Ascites</td>
<td>Absent</td>
<td>Slight</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bilirubin (mg/dL)</td>
<td>1 – 2</td>
<td>2 – 3</td>
<td>> 3</td>
</tr>
<tr>
<td>Albumin (gm/dL)</td>
<td>> 3.5</td>
<td>2.8 – 3.5</td>
<td>< 2.8</td>
</tr>
<tr>
<td>Prothrombin Time</td>
<td>1 – 4</td>
<td>4 – 10</td>
<td>> 10</td>
</tr>
</tbody>
</table>

Classification of Clinical Severity

<table>
<thead>
<tr>
<th>Clinical Severity</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Points</td>
<td>5 – 6</td>
<td>7 – 9</td>
<td>> 9</td>
</tr>
</tbody>
</table>
Correlation of Lab Test Results with Impaired CYP Enzyme Function

The Central Problem:

There is no laboratory test of liver function that is as useful for guiding drug dose adjustment in patients with liver disease as is the estimation of creatinine clearance in patients with impaired renal function.
Correlation of *SPECIAL TESTS* of Liver Function with *CHILD-PUGH SCORES**

"PITTSBURGH COCKTAIL" Approach*

<table>
<thead>
<tr>
<th>DRUG</th>
<th>ENZYME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAFFEINE</td>
<td>CYP 1A2</td>
</tr>
<tr>
<td>CHLORZOXAZONE</td>
<td>CYP 2E1</td>
</tr>
<tr>
<td>DAPSONE</td>
<td>CYP 3A + NAT2</td>
</tr>
<tr>
<td>DEBRISOQUIN</td>
<td>CYP 2D6</td>
</tr>
<tr>
<td>MEPHENYTOIN</td>
<td>CYP 2C19</td>
</tr>
</tbody>
</table>

RESTRICTIVELY Metabolized Drugs:
Effects of Liver Disease

\[CL_H = f_u \, CL_{int} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(CL_H)</th>
<th>FREE CONC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ ALBUMIN</td>
<td>↑</td>
<td>NO CHANGE</td>
</tr>
<tr>
<td>↓ (CL_{int})</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>PORTOSYSTEMIC SHUNTING</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>
Effects of **HEPATIC SHUNTING** on ROWLAND EQUATION*

\[\text{CL}_H = \left(\frac{Q_P}{Q_T} \right) \left(\frac{Q_T f_u \text{CL}_{int}}{Q_T + f_u \text{CL}_{int}} \right) \]

- \(Q_T \) = TOTAL BLOOD FLOW TO LIVER
- \(Q_P \) = BLOOD FLOW PERFUSING LIVER
- \(Q_T - Q_P \) = SHUNT BLOOD FLOW

METABOLIZED DRUGS: EFFECTS OF HEPATIC SHUNTING

<table>
<thead>
<tr>
<th>SEVERITY</th>
<th>Q_T (mL/min)</th>
<th>Q_P (mL/min)</th>
<th>Q_P/Q_T (%)</th>
<th>ANTIPYRINE CL_H (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODERATE</td>
<td>1.26</td>
<td>0.92</td>
<td>73</td>
<td>27.1</td>
</tr>
<tr>
<td>SEVERE</td>
<td>0.72</td>
<td>0.20</td>
<td>28</td>
<td>10.3</td>
</tr>
<tr>
<td>SEVERE/MODERATE</td>
<td>0.57</td>
<td>0.22</td>
<td>0.38</td>
<td>0.38</td>
</tr>
</tbody>
</table>

NON-RESTRICTIVELY Metabolized Drugs: Effects of Liver Disease

\[CL_H = Q \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>(CL_H)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\downarrow) ALBUMIN</td>
<td>NO CHANGE*</td>
<td>NO CHANGE</td>
</tr>
<tr>
<td>(\downarrow CL_{int})</td>
<td>“NO CHANGE”</td>
<td>“NO CHANGE”</td>
</tr>
<tr>
<td>(\downarrow) HEPATIC PERFUSION</td>
<td>(\downarrow\downarrow)</td>
<td>(\uparrow\uparrow)</td>
</tr>
</tbody>
</table>

* HOWEVER, NOTE THAT FREE CONCENTRATION IS \(\uparrow \)
NON-RESTRICTIVELY Metabolized Drugs:

Effects of **Liver Disease**

\[CL_H = Q \]

<table>
<thead>
<tr>
<th></th>
<th>(CL_H)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ ALBUMIN</td>
<td>NO CHANGE*</td>
<td>NO CHANGE</td>
</tr>
<tr>
<td>↓ (CL_{int})</td>
<td>"NO CHANGE"</td>
<td>"NO CHANGE"</td>
</tr>
<tr>
<td>↓ HEPATIC PERFUSION</td>
<td>↓↓</td>
<td>↑↑</td>
</tr>
</tbody>
</table>

HOWEVER, \(f_u CL_{int} \) MAY NO LONGER BE \(\ll Q \)
NON-RESTRICTIVELY Metabolized Drugs: Effects of Liver Disease

\[CL_H = Q \]

<table>
<thead>
<tr>
<th></th>
<th>(CL_H)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ ALBUMIN</td>
<td>NO CHANGE*</td>
<td>NO CHANGE</td>
</tr>
<tr>
<td>↓ (CL_{int})</td>
<td>“NO CHANGE”</td>
<td>“NO CHANGE”</td>
</tr>
<tr>
<td>↓ HEPATIC PERFUSION</td>
<td>↓↓</td>
<td>↑↑</td>
</tr>
</tbody>
</table>
Effects of **Hepatic Shunting** on Rowland Equation*

\[
CL_H = \left(\frac{Q_P}{Q_T} \right) \left(\frac{Q_T f_u CL_{int}}{Q_T + f_u CL_{int}} \right)
\]

- \(Q_T\) = TOTAL BLOOD FLOW TO LIVER
- \(Q_P\) = BLOOD FLOW PERFUSING LIVER
- \(Q_T - Q_P\) = SHUNT BLOOD FLOW

NON-RESTRICTIVELY Metabolized Drugs: Effects of Decreased Liver Perfusion*

<table>
<thead>
<tr>
<th>SEVERITY</th>
<th>Q_T (mL/min)</th>
<th>Q_P (mL/min)</th>
<th>Q_P/Q_T (%)</th>
<th>ICG CL_H (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODERATE</td>
<td>1.26</td>
<td>0.92</td>
<td>73</td>
<td>766</td>
</tr>
<tr>
<td>SEVERE</td>
<td>0.72</td>
<td>0.20</td>
<td>28</td>
<td>182</td>
</tr>
<tr>
<td>SEVERE/MODERATE</td>
<td>0.57</td>
<td>0.22</td>
<td>0.38</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Influence of PORTOSYSTEMIC SHUNTING on Oral Bioavailability (F)

RESTRICTIVELY Eliminated Drugs:
Little change

NON-RESTRICTIVELY Eliminated Drugs:
SHUNTING may markedly increase extent of drug absorption (F)
CIRRHOSIS Affects Exposure to Some NON-RESTRICTIVELY Metabolized Drugs

<table>
<thead>
<tr>
<th></th>
<th>Absolute Bioavailability</th>
<th>Relative Exposure CIRRHOTICS/CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls (%)</td>
<td>CIRRHOTICS (%)</td>
</tr>
<tr>
<td>MEPERIDINE</td>
<td>48</td>
<td>87</td>
</tr>
<tr>
<td>PENTAZOCINE</td>
<td>18</td>
<td>68</td>
</tr>
<tr>
<td>PROPRANOLOL</td>
<td>38</td>
<td>54</td>
</tr>
</tbody>
</table>

* THIS ALSO INCORPORATES 55% INCREASE IN PROPRANOLOL f_u
CIRRHOSIS Affects Renal Function: The Hepatorenal Syndrome

- **Risk** in Patients with Cirrhosis, Ascitis, and GFR > 50 mL/min:
 - 18% within 1 year
 - 39% within 5 years

- **Predictors** of Risk:
 - Small liver
 - Low serum albumin
 - High plasma renin

- Cockcroft and Gault Equation may *overestimate* renal function
CIRRHOSIS Affects Renal Function: The Hepatorenal Syndrome

- The Syndrome has a *FUNCTIONAL* rather than an Anatomical Basis.
HEPATORENAL SYNDROME

ANTEMORTEM Arteriogram
HEPATORENAL SYNDROME
POSTMORTEM Arteriogram
CIRRHOSIS Affects Renal Function: The Hepatorenal Syndrome

- Therapy with some drugs *may precipitate* Hepatorenal Syndrome
 - ACE Inhibitors
 - NSAIDs
 - Furosemide (High Total Doses)
CIRRHOSIS May Affect Drug Distribution

- **Increased** *Free Concentration* of *NON-RESTRICTIVELY* Eliminated Drugs (e.g. PROPRANOLOL)

- **Increased Permeability** of *Blood:CNS Barrier* (e.g. CIMETIDINE)
CIRRHOSIS Affects Drug Distribution:

Increased CNS Penetration of Cimetidine*

CIRRHOSIS may affect *PHARMACODYNAMICS*

- Sedative response to *BENZODIAZEPINES* is exaggerated
- Response to *LOOP DIURETICS* is reduced
The Central Problem:

There is no laboratory test of liver function that is as useful for guiding drug dose adjustment in patients with liver disease as is the estimation of creatinine clearance in patients with impaired renal function.
PUGH-CHILD CLASSIFICATION of Liver Disease Severity

<table>
<thead>
<tr>
<th>ASSESSMENT PARAMETERS</th>
<th>1 POINT</th>
<th>ASSIGNED SCORE</th>
<th>2 POINTS</th>
<th>3 POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCEPHALOPATHY GRADE</td>
<td>0</td>
<td>1 or 2</td>
<td>3 or 4</td>
<td></td>
</tr>
<tr>
<td>ASCITES</td>
<td>ABSENT</td>
<td>SLIGHT</td>
<td>MODERATE</td>
<td></td>
</tr>
<tr>
<td>BILIRUBIN (mg/dL)</td>
<td>1 – 2</td>
<td>2 – 3</td>
<td>> 3</td>
<td></td>
</tr>
<tr>
<td>ALBUMIN (gm/dL)</td>
<td>> 3.5</td>
<td>2.8 – 3.5</td>
<td>< 2.8</td>
<td></td>
</tr>
<tr>
<td>PROTHROMBIN TIME (seconds > control)</td>
<td>1 – 4</td>
<td>4 – 10</td>
<td>> 10</td>
<td></td>
</tr>
</tbody>
</table>

CLASSIFICATION OF CLINICAL SEVERITY

<table>
<thead>
<tr>
<th>CLINICAL SEVERITY</th>
<th>MILD</th>
<th>MODERATE</th>
<th>SEVERE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL POINTS</td>
<td>5 – 6</td>
<td>7 – 9</td>
<td>> 9</td>
</tr>
</tbody>
</table>
Drugs CONTRAINDICATED in Patients with Severe Liver Disease

- May precipitate renal failure:
 - NSAIDs
 - ACE Inhibitors

- Predispose to bleeding:
 - β-LACTAMS with N-Methylthiotetrazole Side Chain (e.g. CEFOTETAN)
Drug Requiring \(\geq 50\% \) Dose Reduction in Patients with MODERATE CIRRHOSIS

<table>
<thead>
<tr>
<th>ANALGESIC DRUGS</th>
<th>CHANGE IN CIRRHOSIS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F)</td>
<td>(\text{CL}_E)</td>
<td></td>
</tr>
<tr>
<td>Morphine</td>
<td>(\uparrow 213%)</td>
<td>(\downarrow 59%)</td>
<td></td>
</tr>
<tr>
<td>Meperidine</td>
<td>(\uparrow 94%)</td>
<td>(\downarrow 46%)</td>
<td></td>
</tr>
<tr>
<td>Pentazocine</td>
<td>(\uparrow 318%)</td>
<td>(\downarrow 50%)</td>
<td></td>
</tr>
</tbody>
</table>
Drugs Requiring ≥ 50% Dose Reduction in Patients with MODERATE CIRRHOSIS

<table>
<thead>
<tr>
<th>CARDIOVASC. DRUGS</th>
<th>CHANGE IN CIRRHOSIS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>CL_E</td>
</tr>
<tr>
<td>Propafenone</td>
<td>↑ 257%</td>
<td></td>
<td>↓ 24%</td>
</tr>
<tr>
<td>Verapamil</td>
<td>↑ 136%</td>
<td></td>
<td>↓ 51%</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>↑ 78%</td>
<td></td>
<td>↓ 60%</td>
</tr>
<tr>
<td>Losartan</td>
<td>↑ 100%</td>
<td></td>
<td>↓ 50%</td>
</tr>
</tbody>
</table>
Drugs Requiring $\geq 50\%$ Dose Reduction in Patients with MODERATE CIRRHOSIS

<table>
<thead>
<tr>
<th>OTHER DRUGS</th>
<th>CHANGE IN CIRRHOSIS</th>
<th>F</th>
<th>CL_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omeprazole</td>
<td>\uparrow 75%</td>
<td></td>
<td>\downarrow 89%</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>\uparrow 33%</td>
<td></td>
<td>\downarrow 72%</td>
</tr>
</tbody>
</table>
Recommended Evaluation of Pharmacokinetics in Liver Disease Patients*

REDUCED Study Design:
- Study Control Patients and Patients with *Child-Pugh Moderate Impairment*
- Findings in Moderate Category *Applied to Mild Category; Dosing Prohibited in Severe Category*

FULL Study Design:
- Study Control Patients and Patients in *All Child-Pugh Categories*
- Population PK Approach

* FDA Clinical Pharmacology Guidance, May 2003