CLINICAL PHARMACOKINETICS
Juan J.L. Lertora, M.D., Ph.D.
Director
Clinical Pharmacology Program

Office of Clinical Research Training and Medical Education
National Institutes of Health
Clinical Center
USES OF PHARMACOKINETICS

• Basis for *rational dose selection* in therapeutics

• Development and *evaluation of new drugs*

• Basic studies of *drug distribution* (PET Scan)
Target Concentration Strategy

ESTIMATE INITIAL DOSE
TARGET LEVEL
LOADING DOSE
MAINTENANCE DOSE

Down arrow

Begin therapy

Down arrow

Assess Therapy
Patient Response
Drug level

Down arrow

Refine Dose Estimate – Arrow back to Assess Therapy

Adjust Dose (return to Assess Therapy)
RATIONALE FOR PLASMA LEVEL MONITORING

Flowchart for rationale for plasma level monitoring beginning with Prescribed dose and ending in effect.
FIRST DESCRIPTION OF THERAPEUTIC DRUG MONITORING

Copy of this article from
Wuth O. JAMA
1927;88:2013-17.
RADIOIMMUNOASSAY

Photo of Rosalyn Sussman Yalow – 1977 Nobel Laureate
GAS LIQUID CHROMATOGRAPHY

Photo of gas liquid chromatography
HIGH PERFORMANCE
LIQUID CHROMATOGRAPHY

Photo of high performance liquid chromatograph
FLUORESCENCE POLARIZATION IMMUNOASSAY

Photo of TDX FPIA Analyzer
DRUG CANDIDATES FOR TDM

• Low therapeutic index

• No physiologic or therapeutic endpoints to guide dosage

• Pharmacokinetics vary widely between individuals

• Need to monitor adherence?
EFFECT OF ADHERENCE RATE ON OUTCOME IN HIV INFECTED PATIENTS

Bar chart showing virologic failure rates and percent of adherence rates. Adherence improves treatment outcome.
INDICATIONS for Measuring Blood Levels

- To evaluate suspected toxicity
- To evaluate actual or potential lack of therapeutic efficacy
- To monitor prophylactic therapy
- To guide dose adjustment
Target Concentration Strategy

Estimate initial dose
Target level
Loading dose
Maintenance dose
DIGOXIN Levels in *TOXIC* and *NONTOXIC* Patients*

Chart showing that from Smith TW and Haber E. J Clin Invest 1970;49-2377-86
DIGOXIN: Factors Influencing OUTCOME in “GREY ZONE”

Up Arrow - Risk of toxicity in patients with coronary heart disease, hypoxemia, and/or hypokalemia, hypomagnesemia

Down Arrow - ECG evidence of toxicity if concurrent therapy with antiarrhythmic drugs
TRADITIONAL Guidelines
for DIGOXIN Levels

THERAPEUTIC RANGE: 0.8 - 1.6 ng/mL

POSSIBLY TOXIC LEVELS: 1.6 - 3.0 ng/mL

PROBABLY TOXIC LEVELS: greater than 3.0 ng/mL
SURVIVAL as a function of DIGOXIN LEVEL measured after 1 Month Rx*

Chart illustrating that from Rathore SS, et Al. JAMA 2003;289:871-8
PROPOSED Range of DIGOXIN LEVELS for OPTIMAL THERAPY in CHF

New Therapeutic Range: 0.5 - 0.9 ng/mL

Benefit results from INHIBITION OF SYMPATHETIC NERVOUS SYSTEM rather than (up arrow) INOTROPY

BUT DIGOXIN DOSES PRESCRIBED FOR PATIENTS WITH THIS RANGE OF DIGOXIN LEVELS SHOULD HAVE BEEN ASSOCIATED WITH HIGHER LEVELS?
DIGOXIN DOSES for Patients with Levels of 0.5 - 0.8 ng/mL

Bar chart showing percent of patients taking four different daily doses of Digoxin from Rathore SS, et al. JAMA 2003,289:871-8
Target Concentration Strategy

ESTIMATE INITIAL DOSE
TARGET LEVEL
LOADING DOSE
MAINTENANCE DOSE

BASED ON CONCEPT OF DISTRIBUTION VOLUME
DIGOXIN LEVELS after IV Dose

Chart illustrating this showing the distribution phase and the elimination phase
Initial Digitalization

Formula relating initial dose, initial digoxin concentration and apparent volume of distribution.
3 DISTRIBUTION VOLUMES
DISTRIBUTION DELAYS ONSET of DIGOXIN Chronotropic Action*

DISTRIBUTION DELAYS ONSET of DIGOXIN Inotropic Action*
Target Concentration Strategy

Estimate initial dose
Target level
Loading dose
Maintenance dose

Based on concepts
Elimination half life
and clearance
ELIMINATION HALF-LIFE

ELIMINATION HALF-LIFE IS THE TIME REQUIRED FOR THE PLASMA CONCENTRATION (OR TOTAL BODY STORES) OF A DRUG TO FALL TO HALF OF THE CONCENTRATION (OR AMOUNT) PRESENT AT SOME PREVIOUS TIME.
ELIMINATION PARAMETERS

t $\frac{1}{2}$ = elimination half life
k = elimination rate
CLE = elimination clearance
Maintenance Digoxin Therapy

Formula relating maintenance dose to daily digoxin loss from the body.
DIGOXIN CUMULATION

Formula showing exponential accumulation of digoxin.
CUMULATION FACTOR

\[\tau = \text{dose interval} \]
\[k = \text{elimination rate constant} \]
ELIMINATION RATE CONSTANT
LOADING & MAINTENANCE DOSES

Chart showing Digoxin levels over time as a function of loading and maintenance dosing.
TIME-COURSE OF DIGOXIN CUMULATION

Chart showing plasma Digoxin levels over time.

Steady-state levels take longer to be reached in patients with uremia.
DIGOXIN CASE HISTORY

A 39 year-old man with mitral stenosis was hospitalized for mitral valve replacement (October 1981). He had a history of chronic renal failure resulting from interstitial nephritis and was maintained on hemodialysis. His mitral valve was replaced with a prosthesis and digoxin therapy was initiated postoperatively in a dose 0.25 mg/day.
DIGOXIN CASE HISTORY (cont.)

Two weeks later, he was noted to be unusually restless in the evening. The following day, he died shortly after he received his morning Digoxin dose. Blood was obtained during an unsuccessful resuscitation attempt, and the measured plasma Digoxin concentration was 6.9 ng/mL.
Target Concentration Strategy

ESTIMATE INITIAL DOSE
TARGET LEVEL
LOADING DOSE
MAINTENANCE DOSE

Down arrow

BEGIN THERAPY

Down arrow

ASSESS THERAPY
PATIENT RESPONSE
DRUG LEVEL

Down Arrow

REFINE DOSE ESTIMATE

Down arrow

ADJUST DOSE (Arrow back to Assess Therapy)
Target Concentration Strategy

ESTIMATE INITIAL DOSE
TARGET LEVEL
LOADING DOSE
MAINTENANCE DOSE

Down arrow

BEGIN THERAPY

Down arrow

ASSESS THERAPY
PATIENT RESPONSE
DRUG LEVEL

Down Arrow

REFINE DOSE ESTIMATE

Down arrow

ADJUST DOSE (Arrow back to Assess Therapy)
PHARMACOKINETIC ANALYSIS OF DIGOXIN CASE HISTORY

ESTIMATED T1/2:
4.3 days (k = 0.16 day\(^{-1}\))

TIME TO 90% STEADY STATE:
3.3 x 4.3 = 14.2 days

STEADY STATE PEAK LEVEL:
6.2 ng/mL (post distribution phase)

MEASURED LEVEL:
6.9 ng/mL (pre distribution)
STEADY STATE CONCENTRATION

Continuous infusion:

Intermittent Dosing:
STEADY STATE CONCENTRATION

- Not determined by loading dose
- Mean steady state concentration not determined by Vd
- Peak and trough are affected by Vd
\(V_d \) **AFFECTS PEAK AND TROUGH**
BUT NOT MEAN LEVELS

Chart illustrating this
FOR MOST DRUGS, C_{ss} IS PROPORTIONAL TO DOSE
(Dosing Rate)

Continuous Infusion:

Intermittent dosing:
STEADY STATE CONCENTRATION

• *NOT DETERMINED BY LOADING DOSE*

• MEAN STEADY STATE CONCENTRATION *NOT DETERMINED BY Vd*

• CHANGES IN MAINTENANCE DOSE RESULT IN DIRECTLY PROPORTIONAL CHANGES IN C_{ss} FOR MOST DRUGS
PHARMACOKINETIC MODELS

WHAT PHARMACOKINETIC PARAMETERS ARE PRIMARY?
SINGLE COMPARTMENT MODEL

Example diagram
ELIMINATION HALF-LIFE

Therefore, $t \frac{1}{2}$ is a primary pharmacokinetic parameter
3 DISTRIBUTION VOLUMES
Some Drugs are NOT Eliminated by First Order Kinetics

Phenytoin (Dilantin)

Ethyl Alcohol

Acetylsalicylic Acid (aspirin)
Phenytoin Hydroxylation

Chemical structure
Phenytoin Kinetics
In Normal Subjects

Chart depicting that.
Steady State Equations
<table>
<thead>
<tr>
<th>Phenytoin Dose</th>
<th>Plasma Level</th>
</tr>
</thead>
</table>

From: Kutt H, McDowell F: J Am Med Assoc 1968:203:969-72
Patient who Became Toxic on a Phenytoin Dose of 300 mg/day

Chart illustrating this.
Phenytoin Case History

After inpatient evaluation for a generalized seizure, a 28-year-old woman was discharged on phenytoin therapy at a dose of 300 mg/day.

After 5 days of therapy, she presented to the hospital’s emergency department with marked ataxia. Her phenytoin plasma concentration was found to be 27 μg/mL. She was sent home on a reduced phenytoin dose of 200 mg/day.
Phenytoin Case History (cont.)

Two days later, she returned to the emergency department with more severe ataxia. Her phenytoin plasma concentration was now 32 μg/mL. Non-compliance was suspected but a clinical pharmacology evaluation was requested.
Patient with Very Low VMAX

Chart depicting this.
Concluding Thoughts

- *PRACTICE PROBLEMS* AT END OF CHAPTER 2 WITH ANSWERS IN APPENDIX II
- *EQUATIONS* DERIVED IN “PRINCIPLES OF CLINICAL PHARMACOLOGY” TEXTBOOK
- *LAPLACE TRANSFORMS* INTRODUCED WITH TABLES IN APPENDIX I