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Questions To Be AskedQuestions To Be Asked

PharmacokineticsPharmacokinetics
What the body does to the drugWhat the body does to the drug

PharmacodynamicsPharmacodynamics
Wh t th d d t th b dWh t th d d t th b dWhat the drug does to the body What the drug does to the body 

Disease progressionDisease progression
Measurable therapeutic effectMeasurable therapeutic effect

VariabilityVariabilityVariabilityVariability
Sources of error and biological variationSources of error and biological variation
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Pharmacokinetics / Pharmacokinetics / 
PharmacodynamicsPharmacodynamics
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PK/PD/Disease ProcessesPK/PD/Disease Processes
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12.00

Hierarchical VariabilityHierarchical Variability
Residual Unknown VariationResidual Unknown Variation
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12.00

Hierarchical VariabilityHierarchical Variability
BetweenBetween--Subject VariationSubject Variation
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12.00

Hierarchical VariabilityHierarchical Variability
Simultaneously Present BetweenSimultaneously Present Between--Subject and Subject and 

Residual Unknown VariationResidual Unknown Variation
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Pharmacokinetic ParametersPharmacokinetic Parameters

Definition of pharmacokinetic parametersDefinition of pharmacokinetic parameters
Descriptive or observational Descriptive or observational 
Quantitative (requiring a formula and a means Quantitative (requiring a formula and a means 
to estimate using the formula)to estimate using the formula)to estimate using the formula)to estimate using the formula)

Formulas for the pharmacokinetic Formulas for the pharmacokinetic 
parametersparameters
Methods to estimate the parameters fromMethods to estimate the parameters fromMethods to estimate the parameters from Methods to estimate the parameters from 
the formulas using measured datathe formulas using measured data
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Models For EstimationModels For Estimation
NoncompartmentalNoncompartmental

CompartmentalCompartmental
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Goals Of This LectureGoals Of This Lecture

Description of the parameters of interestDescription of the parameters of interest
Underlying assumptions of Underlying assumptions of 
noncompartmental and compartmental noncompartmental and compartmental 
modelsmodelsmodelsmodels
Parameter estimation methodsParameter estimation methods
What to expect from the analysisWhat to expect from the analysis
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Goals Of This LectureGoals Of This Lecture

What this lecture is aboutWhat this lecture is about
What are the assumptions, and how can What are the assumptions, and how can 
these affect the conclusionsthese affect the conclusions
Make an intelligent choice of methodsMake an intelligent choice of methodsMake an intelligent choice of methods Make an intelligent choice of methods 
depending upon what information is required depending upon what information is required 
from the datafrom the data

What this lecture is not aboutWhat this lecture is not about
To conclude that one method is “better” than To conclude that one method is “better” than 
anotheranother



13

A Drug In The Body:A Drug In The Body:
Constantly Undergoing ChangeConstantly Undergoing Change

AbsorptionAbsorption
Transport in the circulationTransport in the circulation
T t bT t bTransport across membranesTransport across membranes
Biochemical transformationBiochemical transformation
EliminationElimination
ADMEADME→→ADMEADME

Absorption, Distribution, Absorption, Distribution, 
Metabolism, ExcretionMetabolism, Excretion
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A Drug In The Body:A Drug In The Body:
Constantly Undergoing ChangeConstantly Undergoing Change
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KineticsKinetics
And PharmacokineticsAnd Pharmacokinetics

Kinetics Kinetics 
The temporal and spatial distribution of a The temporal and spatial distribution of a 
substance in a system.substance in a system.

PharmacokineticsPharmacokineticsPharmacokinetics Pharmacokinetics 
The temporal and spatial distribution of a drug The temporal and spatial distribution of a drug 
(or drugs) in a system.(or drugs) in a system.
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Definition Of Kinetics: Definition Of Kinetics: 
ConsequencesConsequences

SpatialSpatial:  :  WhereWhere in the systemin the system
Spatial coordinatesSpatial coordinates
Key variables: (x, y, z)Key variables: (x, y, z)

y1
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Z-axis

TemporalTemporal:  :  WhenWhen in the systemin the system
Temporal coordinatesTemporal coordinates
Key variable: tKey variable: t
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A Drug In The Body:A Drug In The Body:
Constantly Undergoing ChangeConstantly Undergoing Change
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A Drug In The Body:A Drug In The Body:
Constantly Undergoing ChangeConstantly Undergoing Change
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Spatially Distributed ModelsSpatially Distributed Models

Spatially realistic models:Spatially realistic models:Spatially realistic models:Spatially realistic models:
Require a knowledge of physical Require a knowledge of physical 
chemistry, irreversible thermodynamics chemistry, irreversible thermodynamics 
and circulatory dynamics.and circulatory dynamics.
A diffi lt t lA diffi lt t lAre difficult to solve.Are difficult to solve.
It is difficult to design an experiment to It is difficult to design an experiment to 
estimate their parameter values.estimate their parameter values.

While desirable, normally not practical.While desirable, normally not practical.e des ab e, o a y o p ac cae des ab e, o a y o p ac ca
Question:  What can one do?Question:  What can one do?



20

Resolving The ProblemResolving The Problem

Reducing the system to a finite number of Reducing the system to a finite number of 
componentscomponents
Lumping processes together based upon Lumping processes together based upon 
time location or a combination of the twotime location or a combination of the twotime, location or a combination of the twotime, location or a combination of the two
Space is not taken directly into account: Space is not taken directly into account: 
rather, spatial heterogeneity is modeled rather, spatial heterogeneity is modeled 
through changes that occur in timethrough changes that occur in timethrough changes that occur in timethrough changes that occur in time
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Lumped Parameter ModelsLumped Parameter Models

M d l hi h k th t di tM d l hi h k th t di tModels which make the system discrete Models which make the system discrete 
through a lumping process thus through a lumping process thus 
eliminating the need to deal with partial eliminating the need to deal with partial 
differential equations.differential equations.
Classes of such models:Classes of such models:

NoncompartmentalNoncompartmental modelsmodels
•• Based on algebraic equationsBased on algebraic equations

Compartmental modelsCompartmental modelsCompartmental modelsCompartmental models
•• Based on linear or nonlinear differential equationsBased on linear or nonlinear differential equations
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Probing The SystemProbing The System

Accessible poolsAccessible pools:  These :  These 
are system spaces that are are system spaces that are 
available to the available to the 
experimentalist for test input experimentalist for test input 
and/or measurement.and/or measurement.
Nonaccessible poolsNonaccessible pools:  :  
These are spaces comprising These are spaces comprising 
the rest of the system which the rest of the system which 
are not available for test are not available for test 
input and/or measurement.input and/or measurement.
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Focus On The Accessible PoolFocus On The Accessible Pool
SOURCEINPUT MEASURE
SOURCE

SYSTEM

AP

ELIMINATION
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Characteristics Of The Characteristics Of The 
Accessible PoolAccessible Pool
Kinetically HomogeneousKinetically Homogeneous

Instantaneously WellInstantaneously Well--mixedmixed
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Accessible PoolAccessible Pool
Kinetically HomogeneousKinetically Homogeneous

(ref:  see e.g. Cobelli et al.)
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Accessible PoolAccessible Pool
Instantaneously WellInstantaneously Well--MixedMixed

S1 S1

BA

S2 S2

A = not mixedA = not mixed
B = well mixedB = well mixed

(ref:  see e.g. Cobelli et al.)
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Probing The Accessible PoolProbing The Accessible Pool
SOURCEINPUT MEASURE
SOURCE

SYSTEM

AP

ELIMINATION
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The Pharmacokinetic The Pharmacokinetic 
ParametersParameters

Which pharmacokinetic parameters can Which pharmacokinetic parameters can 
we estimate based on measurements in we estimate based on measurements in 
the accessible pool?the accessible pool?
Estimation requires a modelEstimation requires a modelEstimation requires a modelEstimation requires a model

Conceptualization of how the system worksConceptualization of how the system works
Depending on assumptions:Depending on assumptions:

Noncompartmental approachesNoncompartmental approachesNoncompartmental approachesNoncompartmental approaches
Compartmental approachesCompartmental approaches
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Accessible Pool & SystemAccessible Pool & System
Assumptions Assumptions →→ InformationInformation

A ibl lA ibl lAccessible poolAccessible pool
Initial volume of distributionInitial volume of distribution
Clearance rateClearance rate
Elimination rate constantElimination rate constant
Mean residence timeMean residence timeMean residence timeMean residence time

SystemSystem
Equivalent volume of distributionEquivalent volume of distribution
System mean residence timeSystem mean residence time
BioavailabilityBioavailabilityBioavailabilityBioavailability
Absorption rate constantAbsorption rate constant



30

Compartmental andCompartmental andCompartmental and Compartmental and 
Noncompartmental Noncompartmental 

AnalysisAnalysis

The only difference between the two The only difference between the two 
methods is in how the nonaccessible methods is in how the nonaccessible 

portion of the system is describedportion of the system is describedp yp y
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The Noncompartmental ModelThe Noncompartmental Model
SOURCEINPUT MEASURE
SOURCE

SYSTEM

AP AP

ELIMINATION
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RecirculationRecirculation--exchange exchange 
AssumptionsAssumptions

R i l ti / APRecirculation/
Exchange
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RecirculationRecirculation--exchange exchange 
AssumptionsAssumptions

R i l ti / APRecirculation/
Exchange
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Single Accessible Pool Single Accessible Pool 
Noncompartmental ModelNoncompartmental Model

Parameters (IV bolus and infusion)Parameters (IV bolus and infusion)
Mean residence timeMean residence time
Clearance rateClearance rate
Volume of distributionVolume of distributionVolume of distributionVolume of distribution

Estimating the parameters from dataEstimating the parameters from data
Additional assumption:Additional assumption:

Constancy of kinetic distribution parametersConstancy of kinetic distribution parametersConstancy of kinetic distribution parametersConstancy of kinetic distribution parameters
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Mean Residence TimeMean Residence Time

The average time that a molecule of drug The average time that a molecule of drug 
spends in the systemspends in the system
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Areas Under The CurveAreas Under The Curve
AUMCAUMC

Area Under the Moment CurveArea Under the Moment Curve
AUCAUC

Area Under the CurveArea Under the Curve
MRTMRT

“Normalized” AUMC (units = time)“Normalized” AUMC (units = time)
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What Is Needed For MRT?What Is Needed For MRT?

Estimates for AUC and AUMC.Estimates for AUC and AUMC.
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What Is Needed For MRT?What Is Needed For MRT?

Estimates for AUC and AUMC.Estimates for AUC and AUMC.
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often claimed.often claimed.
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Estimating AUC And AUMC Using Estimating AUC And AUMC Using 
Sums Of ExponentialsSums Of Exponentials
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Bolus IV InjectionBolus IV Injection
Formulas can be extended to other administration modesFormulas can be extended to other administration modes
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Estimating AUC And AUMC Estimating AUC And AUMC 
Using Other MethodsUsing Other Methodsgg

Trapezoidal  Trapezoidal  
LogLog--trapezoidaltrapezoidal
CombinationsCombinations
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The IntegralsThe Integrals

These other methods provide formulas for 
the integrals between t1 and tn leaving it up 
to the researcher to extrapolate to time 
zero and time infinityzero and time infinity.
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Trapezoidal RuleTrapezoidal Rule
For every time tFor every time tii, i = 1, …, n, i = 1, …, n
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LogLog--trapezoidal Ruletrapezoidal Rule

For every time tFor every time tii, i = 1, …, n, i = 1, …, n
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Trapezoidal Rule Potential PitfallsTrapezoidal Rule Potential Pitfalls
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As the number of samples decreases, the As the number of samples decreases, the 
interpolation may not be accurate (depends oninterpolation may not be accurate (depends oninterpolation may not be accurate (depends on interpolation may not be accurate (depends on 
the shape of the curve)the shape of the curve)
Extrapolation from last measurement necessaryExtrapolation from last measurement necessary
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Extrapolating From tExtrapolating From tnn To InfinityTo Infinity

Terminal decay is assumed to be a Terminal decay is assumed to be a 
monoexponential monoexponential 
The corresponding exponent is often The corresponding exponent is often 
calledcalled λλcalled called λλzz..

HalfHalf--life of terminal decay can be life of terminal decay can be 
calculated:calculated:

tt l (2)/l (2)/ λλttz/1/2z/1/2 = ln(2)/ = ln(2)/ λλzz
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Extrapolating From tExtrapolating From tnn To InfinityTo Infinity
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Extrapolating From tExtrapolating From tnn To InfinityTo Infinity
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Estimating The IntegralsEstimating The Integrals

To estimate the integrals, one sums up the 
individual components.

tt

∫∫∫∫
∞∞

++==
n

n

1

1

t

t

t

t

00
dt)t(Cdt)t(Cdt)t(Cdt)t(CAUC

∫∫∫∫
∞∞
⋅+⋅+⋅=⋅=

n

n

1

1

t

t

t

t

00
dt)t(Ctdt)t(Ctdt)t(Ctdt)t(CtAUMC



50

Advantages Of Using Function Advantages Of Using Function 
Extrapolation (Exponentials)Extrapolation (Exponentials)

Extrapolation is automatically done as part Extrapolation is automatically done as part 
of the data fittingof the data fitting
Statistical information for all parameters Statistical information for all parameters 
(e g their standard errors) calculated(e g their standard errors) calculated(e.g. their standard errors) calculated(e.g. their standard errors) calculated
There is a natural connection with the There is a natural connection with the 
solution of linear, constant coefficient solution of linear, constant coefficient 
compartmental modelscompartmental modelscompartmental modelscompartmental models
Software is availableSoftware is available
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Clearance RateClearance Rate

The volume of blood cleared per unit time, The volume of blood cleared per unit time, 
relative to the drugrelative to the drug

ratenEliminatioCL

It can be shown thatIt can be shown that
blood in ionConcentrat

CL =

AUC
DoseDrugCL =
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Remember Our AssumptionsRemember Our Assumptions

If these are not verified If these are not verified 
the estimates will be the estimates will be 
incorrectincorrect
In addition, this approach In addition, this approach 

AP

pppp
cannot straightforwardly cannot straightforwardly 
handle nonlinearities in handle nonlinearities in 
the data (timethe data (time--varying varying 
rates, saturation rates, saturation 
processes, etc.)processes, etc.)
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The Compartmental ModelThe Compartmental ModelThe Compartmental ModelThe Compartmental Model
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Single Accessible PoolSingle Accessible Pool
SOURCEINPUT MEASURE
SOURCE

SYSTEM

AP AP

ELIMINATION



55

Single Accessible Pool ModelsSingle Accessible Pool Models

Noncompartmental Noncompartmental CompartmentalCompartmental

APAP



56

A Model Of The System

Inaccessible Portion

Accessible Portion
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Compartmental ModelCompartmental Model

CompartmentCompartment
Instantaneously wellInstantaneously well--mixedmixed
Kinetically homogeneousKinetically homogeneous

C t t l d lC t t l d lCompartmental modelCompartmental model
Finite number of compartmentsFinite number of compartments
Specifically connectedSpecifically connected
Specific input and outputSpecific input and outputSpecific input and outputSpecific input and output
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Kinetics And The Kinetics And The 
Compartmental ModelCompartmental Model

Time and spaceTime and space
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Demystifying Differential Demystifying Differential 
EquationsEquations

It is all about modelingIt is all about modeling rates of changerates of changeIt is all about modeling It is all about modeling rates of changerates of change, , 
i.e.i.e. slopesslopes, or, or derivativesderivatives::
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Ingredients Of Model BuildingIngredients Of Model Building

Model of the systemModel of the system
Independent of experiment designIndependent of experiment design
Principal components of the biological systemPrincipal components of the biological system

E i t l d iE i t l d iExperimental designExperimental design
Two parts:Two parts:

•• Input function (dose, shape, protocol)Input function (dose, shape, protocol)
•• Measurement function (sampling, location)Measurement function (sampling, location)
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Single Compartment ModelSingle Compartment Model
ThTh t f ht f h ffThe The rate of changerate of change of of 
the amount in the the amount in the 
compartment, qcompartment, q11(t), is (t), is 
equal to what enters the equal to what enters the 

t t (i tt t (i t
q1(t)
Plasma compartment (inputs or compartment (inputs or 

initial conditions), minus initial conditions), minus 
what leaves the what leaves the 
compartment, a compartment, a 
q antit proportional toq antit proportional to

k(0,1)

quantity proportional to quantity proportional to 
qq11(t)(t)
k(0,1) is a k(0,1) is a rate constantrate constant)t(q)1,0(k

dt
)t(dq

1
1 −=
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Experiment DesignExperiment Design
Modeling Input SitesModeling Input Sites

TheThe rate of changerate of change ofofThe The rate of changerate of change of of 
the amount in the the amount in the 
compartment, qcompartment, q11(t), is (t), is 
equal to what enters equal to what enters 
the compartmentthe compartment

q1(t)
Plasma the compartment the compartment 

(Dose), minus what (Dose), minus what 
leaves the leaves the 
compartment, a compartment, a 
quantity proportionalquantity proportional

k(0,1)Dose(t)

quantity proportional quantity proportional 
to q(t)to q(t)
Dose(t) can be any Dose(t) can be any 
function of timefunction of time

)t(Dose)t(q)1,0(k
dt

)t(dq
1

1 +−=
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Experiment Design Experiment Design 
Modeling Measurement SitesModeling Measurement Sites

The measurement (sample) The measurement (sample) 
s1 does not subtract mass or s1 does not subtract mass or 
perturb the systemperturb the system
The measurement equation The measurement equation 
s1 links qs1 links q11 with the with the 
experiment thus preservingexperiment thus preserving

q1(t)
Plasma

s1(t)

experiment, thus preserving experiment, thus preserving 
the units of differential the units of differential 
equations and data (e.g. qequations and data (e.g. q11 is is 
massmass, the measurement is , the measurement is 
concentrationconcentration

k(0,1)Dose(t)

⇒⇒ s1 = qs1 = q11 /V/V
V = volume of distribution of V = volume of distribution of 
compartment 1compartment 1

V
)t(q)t(1s 1=
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NotationNotation
• The fluxes F describe material• The fluxes Fij (from j to i) describe material 

transport in units of mass per unit time

Fi0

Fji

Fij

q i
Fij

F0i
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The Compartmental Fluxes (FThe Compartmental Fluxes (Fijij))

Describe movement among, into or out of Describe movement among, into or out of 
a compartmenta compartment
A composite of metabolic activityA composite of metabolic activity

t tt ttransporttransport
biochemical transformationbiochemical transformation
bothboth

Similar (compatible) time frameSimilar (compatible) time frameSimilar (compatible) time frameSimilar (compatible) time frame
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A Proportional Model For The A Proportional Model For The 
Compartmental FluxesCompartmental Fluxes

q = compartmental massesq = compartmental masses
p = (unknown) system parametersp = (unknown) system parameters
kkjiji = a (nonlinear) function specific to the = a (nonlinear) function specific to the 
t f f i t jt f f i t jtransfer from i to jtransfer from i to j

)t(q)t,p,q(k)t,p,q(F ijiji ⋅=

(ref:  see Jacquez and Simon)
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Nonlinear Kinetics Nonlinear Kinetics ExampleExample

Remember the oneRemember the one--compartment compartment 
model:model:

)t(Dose)t(1q)10(k
)t(1dq

+−=

V
)t(1q

)t(1s

)t(Dose)t(1q)1,0(k
dt

=

+=

What if we had a concentrationWhat if we had a concentration--
dependent drug elimination rate?dependent drug elimination rate?
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Nonlinear Kinetics: Nonlinear Kinetics: 
MichaelisMichaelis--MentenMenten

MichaelisMichaelis--MentenMenten kinetics:kinetics:

)t(Dose)t(1q
)(

Vm)t(1dq
+−=

VV i l t b li ti l t b li t
V
)t(1q

)t(1s

)()(q
)t(cKmdt

=

+

VmVm = maximal metabolic rate= maximal metabolic rate
Km = Km = MichaelisMichaelis--MentenMenten constantconstant
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Linear vs. Nonlinear KineticsLinear vs. Nonlinear Kinetics
If KIf K ((tt) th) thIf Km >> If Km >> cc((tt) then:) then:

)t(Dose)t(1q
Km
Vm

dt
)t(1dq

+−≅

The concentration declines at a rate The concentration declines at a rate 
ti l t it (ti l t it (fi tfi t dd ki tiki ti ))

V
)t(1q

)t(1s =

proportional to it (proportional to it (firstfirst--order order kineticskinetics))
This is true at This is true at lowlow concentrations (concentrations (w.r.tw.r.t. Km). Km)
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Linear vs. Nonlinear KineticsLinear vs. Nonlinear Kinetics

If Km << If Km << cc((tt) then:) then:

)t(Dose1vVm)t(D)t(1q
)t(c

Vm
dt

)t(1dq
+×−=δ+−≅

The concentration declines at a constant rate The concentration declines at a constant rate 
V
)t(1q

)t(1s

)(

=

((zerozero--order kineticsorder kinetics))
This is true at This is true at highhigh concentrations (concentrations (w.r.tw.r.t. Km). Km)
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Tracking NonlinearitiesTracking Nonlinearities

How to find nonlinear behavior?How to find nonlinear behavior?

)t(Dose)t(1q
)t(cKm

Vm
dt

)t(1dq
+

+
−=

W t hW t h Si l t d t ti tiSi l t d t ti ti
V
)t(1q

)t(1s

)t(cKmdt

=

+

WatchWatch: Simulated concentration time : Simulated concentration time 
profile for D = 180 mg, Vm = 20 profile for D = 180 mg, Vm = 20 
mg/L/hr, Km = 1 mg/L, v1 = 5 Lmg/L/hr, Km = 1 mg/L, v1 = 5 L
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Tracking NonlinearitiesTracking Nonlinearities
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Tracking NonlinearitiesTracking Nonlinearities
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The Fractional Coefficients (kThe Fractional Coefficients (kijij))

• The fractional coefficients kij are called 
fractional transfer functions

• If kij does not depend on the 
compartmental masses then the kij iscompartmental masses, then the kij is 
called a fractional transfer (or rate) 
constant.

k)t(k ijij k)t,p,q(k =
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Compartmental Models And Compartmental Models And 
Systems Of Ordinary Differential Systems Of Ordinary Differential 

EquationsEquationsEquationsEquations

Good mixingGood mixing
permits writing qpermits writing qii(t) for the i(t) for the ithth compartment.compartment.

Kinetic homogeneityKinetic homogeneity
permits connecting compartments via the permits connecting compartments via the 
kkijij..
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The iThe ithth CompartmentCompartment

nn
i F)t(q)tpq(k)t(q)tpq(kdq
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Linear, Constant Coefficient Linear, Constant Coefficient 
Compartmental ModelsCompartmental Models

All transfer rates kAll transfer rates kijij are constant.are constant.
This facilitates the required computations This facilitates the required computations 
greatlygreatlyg yg y

Assume “steady state” conditions.Assume “steady state” conditions.
Changes in compartmental mass do not affect Changes in compartmental mass do not affect 
the values for the transfer ratesthe values for the transfer ratesthe values for the transfer ratesthe values for the transfer rates
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The iThe ithth CompartmentCompartment

nn
i F)t(qk)t(qkdq
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The Compartmental MatrixThe Compartmental Matrix
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Compartmental ModelCompartmental Model

A detailed postulation of how one believes A detailed postulation of how one believes 
a system functions.a system functions.

The need to perform the same experiment The need to perform the same experiment 
on the model as one did in the laboratory.on the model as one did in the laboratory.
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Underlying System ModelUnderlying System Model
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System Model with ExperimentSystem Model with Experiment
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System Model with ExperimentSystem Model with Experiment
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ExperimentsExperiments

Need to recreate the laboratory Need to recreate the laboratory 
experiment on the model.experiment on the model.
Need to specify input and measurementsNeed to specify input and measurements
K UNITSK UNITSKey:  UNITSKey:  UNITS

Input usually in mass, or mass/timeInput usually in mass, or mass/time
Measurement usually concentrationMeasurement usually concentration

•• Mass per unit volumeMass per unit volumeMass per unit volumeMass per unit volume
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ConceptualizationReality Data Analysis
Model Of The System?Model Of The System?

Conceptualization
(Model)

Reality 
(Data)

Data Analysis
and Simulation

program optimize
begin model
…

dend
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Pharmacokinetic ExperimentPharmacokinetic Experiment
Collecting System KnowledgeCollecting System Knowledge
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The model starts as a qualitative construct, The model starts as a qualitative construct, 
based on known physiology and further based on known physiology and further 
assumptionsassumptions
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Data AnalysisData Analysis
Distilling Parameters From DataDistilling Parameters From Data
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• Qualitative model ⇒ quantitative differential 
equations with parameters of physiological interest

• Parameter estimation (nonlinear regression)
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Parameter EstimatesParameter Estimates
Principles of model buildingPrinciples of model buildingPrinciples of model buildingPrinciples of model building

Model definition: structure, error modelModel definition: structure, error model
Model selection: parsimony criteriaModel selection: parsimony criteria
Estimation methods: maximum likelihoodEstimation methods: maximum likelihood

Model Model parameters: parameters: kkijij and volumesand volumes
Pharmacokinetic parameters:  volumes, Pharmacokinetic parameters:  volumes, 
clearance, residence times, etc.clearance, residence times, etc.
ReparameterizationReparameterization -- changing the changing the 
parameters from parameters from kkijij to the PK parameters.to the PK parameters.
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Recovering The PK Parameters Recovering The PK Parameters 
From Compartmental ModelsFrom Compartmental Models

Parameters can be based upon Parameters can be based upon 
The model primary parametersThe model primary parameters

Diff ti l ti tDiff ti l ti t•• Differential equation parametersDifferential equation parameters
•• Measurement parametersMeasurement parameters

The compartmental matrixThe compartmental matrix
•• Aggregates of model parametersAggregates of model parameters•• Aggregates of model parametersAggregates of model parameters
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Compartmental Model Compartmental Model ⇒⇒
ExponentialExponential
)t(d

V
)t(q)t(1s

)t(Dose)t(q)1,0(k
dt

)t(dq

1

1
1

=

δ+−=

t)10(k1

t)1,0(k
1

Dose)t(q)t(1

eDose)t(q

−

−⋅=

For a pulse input δ(t)

t)1,0(k1 e
VV

)(q)t(1s ==

V)1,0(kCL ×=
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Compartmental Residence TimesCompartmental Residence Times

1 2

R t t tR t t tRate constantsRate constants
Residence timesResidence times
Intercompartmental clearancesIntercompartmental clearances
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Parameters Based Upon The Parameters Based Upon The 
Compartmental MatrixCompartmental MatrixCompartmental MatrixCompartmental Matrix

⎤⎡ kkk ⎟
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Theta, the negative of the inverse of the compartmental 
matrix, is called the mean residence time matrix.
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Parameters Based Upon The Parameters Based Upon The 
Compartmental MatrixCompartmental MatrixCompartmental MatrixCompartmental Matrix

Generalization of Mean Residence TimeGeneralization of Mean Residence Time

ijϑ
The average time the drug entering compartment j
for the first time spends in compartment i beforeijϑ

jiij ≠
ϑ

for the first time spends in compartment i before
leaving the system.

The probability that a drug particle in
j ill ll h hji,

ii
≠

ϑ
compartment j will eventually pass through
compartment i before leaving the system.
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Compartmental Models:Compartmental Models:
AdvantagesAdvantages

Can handle nonlinearitiesCan handle nonlinearities
Provide hypotheses about system Provide hypotheses about system 
structurestructure
Can aid in experimental design, for Can aid in experimental design, for 
example to design dosing regimensexample to design dosing regimens
C t t l ti l hC t t l ti l hCan support translational researchCan support translational research
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Bias That Can Be Introduced By Bias That Can Be Introduced By 
Noncompartmental AnalysisNoncompartmental Analysis

N t i l i kN t i l i kNot a single sinkNot a single sink
== Clearance rateClearance rate
↓↓ Mean residence timeMean residence time
↓↓ Volume of distributionVolume of distribution
↑↑ Fractional clearanceFractional clearance↑↑ Fractional clearanceFractional clearance

Not a single sink / not a single sourceNot a single sink / not a single source
↓↓ Clearance rateClearance rate
↓↓ Mean residence timeMean residence time
↓↓ Volume of distributionVolume of distribution↓↓ Volume of distributionVolume of distribution
↑↑ Fractional clearanceFractional clearance

JJ JJ DiStefanoDiStefano III.III.
NoncompartmentalNoncompartmental vsvs compartmental analysis: some bases for choice.  compartmental analysis: some bases for choice.  
Am J. Am J. PhysiolPhysiol. 1982;243:R1. 1982;243:R1--R6R6
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Nonlinear PharmacokineticsNonlinear Pharmacokinetics
E l tib d h ki tiE l tib d h ki tiExample: antibody pharmacokineticsExample: antibody pharmacokinetics
Often, antibodies exhibit targetOften, antibodies exhibit target--mediated mediated 
disposition, and thus their elimination may disposition, and thus their elimination may 
occur at sites remote from plasma due tooccur at sites remote from plasma due tooccur at sites remote from plasma due to occur at sites remote from plasma due to 
binding and internalization processesbinding and internalization processes
This is one of many possible biological This is one of many possible biological 
processes causing nonlinear (capacityprocesses causing nonlinear (capacity--p g ( p yp g ( p y
limited) pharmacokinetic behaviorslimited) pharmacokinetic behaviors
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Impact of Impact of NoncompartmentalNoncompartmental
Analysis AssumptionsAnalysis Assumptions

When drug elimination is influenced by When drug elimination is influenced by 
binding to its pharmacological target, the binding to its pharmacological target, the 
assumptions of assumptions of noncompartmentalnoncompartmental
analysis may not be met to a varyinganalysis may not be met to a varyinganalysis may not be met to a varying analysis may not be met to a varying 
degree and parameter estimates may be degree and parameter estimates may be 
misleadingmisleading
NoncompartmentalNoncompartmental analysis always analysis always pp y yy y
requires linearity and time invariance, but requires linearity and time invariance, but 
it can be useful to explore nonlinearitiesit can be useful to explore nonlinearities



98

Example of Dose NonlinearitiesExample of Dose Nonlinearities
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PK example from PK example from SheremataSheremata et al. (1999)as reported in et al. (1999)as reported in MagerMager (2006)(2006)
TargetTarget--mediated drug disposition and dynamicsmediated drug disposition and dynamics
Biochemical Pharmacology 72(2006) 1Biochemical Pharmacology 72(2006) 1--1010
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TargetTarget--Mediated Drug DispositionMediated Drug Disposition

33
Tissue

k

ksyn
ktp kpt

1
Dosing

2
Plasma

4
Free 

Receptor

5
Receptor 
Complex

+
kon

koff

ka

kdeg kmkel
MagerMager
TargetTarget--mediated drug disposition and dynamicsmediated drug disposition and dynamics
Biochemical Pharmacology 72(2006) 1Biochemical Pharmacology 72(2006) 1--1010
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Take Home MessageTake Home Message

To estimate traditional pharmacokinetic To estimate traditional pharmacokinetic 
parameters, either model is probably adequate parameters, either model is probably adequate 
when the sampling schedule is dense, provided when the sampling schedule is dense, provided 
all assumptions required for noncompartmental all assumptions required for noncompartmental 
analysis are metanalysis are met
Sparse sampling schedule and nonlinearities Sparse sampling schedule and nonlinearities 
may be an issue for noncompartmental analysismay be an issue for noncompartmental analysis
Noncompartmental models are not predictiveNoncompartmental models are not predictiveNoncompartmental models are not predictiveNoncompartmental models are not predictive
Best strategy is probably a blend: but, careful Best strategy is probably a blend: but, careful 
about assumptions!about assumptions!
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